

doi: 10.32374/xxxxxx1 ISSN: 2004-2981 · Published in Sweden

RESOURCES & ACTIVITIES

The Leiden/ESA Astrophysics Program for Summer Students (LEAPS)

Stefano Bellotti^{1,*}, Andrew D. Sellek¹, Piyush Sharda¹, Katarzyna M. Dutkowska¹, Ashley Chrimes² and Huub Röttgering¹

¹Leiden Observatory, Leiden University, Leiden, 2300 RA, PO Box 9513, Netherlands; ²European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands

*bellotti@strw.leidenuniv.nl

Abstract

International student mobility plays a critical role in shaping future research careers, particularly in highly globalized fields such as astrophysics. The Leiden/ESA Astrophysics Program for Summer Students (LEAPS) offers a 10-week, fully funded research program at Leiden Observatory and the European Space Agency's ESTEC centre for undergraduate and master's students. Designed to foster early research involvement, LEAPS supports students from diverse academic and cultural backgrounds. Since its inception in 2013, LEAPS has hosted **194** students from over 40 countries. Data collected for **165** participants reveal that over 50% have progressed to Ph.D. studies, with some members of earlier cohorts already securing competitive international fellowships in astronomy. LEAPS participants have collectively contributed to at least **25** peer-reviewed publications and 13 international conference presentations. LEAPS has **contributed successfully** in preparing undergraduates for research careers in astrophysics through hands-on experience, mentorship, and scientific exposure. By addressing barriers related to financial means and promoting diversity, the program not only enhances individual career trajectories but also contributes to the broader goal of inclusive academic mobility. Continued efforts are needed to further increase global representation and assess long-term impacts on participants' scientific careers.

Keywords: Early career researchers; Careers in Astronomy; Student Mobility; Diversity

1 Introduction

Research shows that a primary motivation for students to undertake education abroad is to improve their career prospects (e.g.
Rodrigues, 2012; Petzold and Moog, 2018), especially considering that the skills accrued during such programs (for example 17
network, intercultural competences, and personal development) 18
are broadly valued by policy makers and practitioners (e.g. Zimmermann and Neyer, 2013; Netz and Cordua, 2021). From 20
an employability point of view, international student mobility 21

has a positive effect (e.g. Teichler and Janson, 2007; Kratz and 22 Netz, 2018) given that it may be symbolic of attractive features 23

such as commitment, willingness to work hard, and adaptability (Jacob et al., 2019). Van Mol (2017) showed that certain employers regard mobile students with international experience as equipped with decision-making competence, for instance.

Rodrigues (2013) reported a positive correlation between mobility experience and working abroad, that is, the influence that international mobility has in the development of personal preferences of students towards pursuing international careers (see also Hernández, 2020, **for instance**). A recent analysis by Knutsen et al. (2024) shows that students with a university degree conducted fully or partly abroad are 19-22% and 3-5% more likely to work abroad than their non-mobile peers. Additionally,

24

27

28

30

31

32

33

34

35

36

38

39

41

42

45

46

49

50

51

52

53

57

58

60

61

62

65

69

70

71

72

73

75

76

77

79

80

83

84

international mobility is effective at increasing campus diversity, 86 as well as reinforcing the financial position of higher education 87 institutions (Brooks and Waters, 2011). Institutions that employ 88 international graduates also benefit from the global competen-89 cies, multilingual capabilities, and cross-cultural perspectives 90 they bring, which can strengthen international collaborations 91 and enrich institutional culture. The presence of internationally 92 mobile researchers is thus a key driver of scientific progress and 93 institutional competitiveness on a global scale. This is particu-94 larly relevant for fields such as astronomy, which heavily relies on 95 international cooperation and collaboration due to its 'universal' 96 nature.

Here, we present the Leiden/ESA Astrophysics Program for 98 Summer Students (LEAPS), which is the framework for summer 99 research opportunities at Leiden Observatory in collaboration 100 with the European Space Research and Technology Centre of 101 the European Space Agency (ESA/ESTEC). Our aim is to describe102 the program, highlight its potential impact on the career of past₁₀₃ participants, discuss limitations and prospective strategies, and 104 overall contextualise it in terms of international student mobility 105 The aim of LEAPS is to allow students with diverse talents, cul-106 tural and scientific backgrounds, and personal circumstances 107 to undertake astrophysics research in Leiden. In addition, the 108 aim is for the students to build their scientific profile towards a 109 research career. Astrophysics is a highly international discipline 110 and, for many students, LEAPS can represent a first opportunity111 to experience research beyond their undergraduate institute112 and on an international level. In this paper, we describe the goal 113 and structure of LEAPS in Sect. 2, and its scientific impact and 114 the positive influence on the participants' career in Sect. 3, and 115 finally we present our conclusions in Sect. 4.

2 Goal and Selection Criteria of LEAPS

LEAPS is a fully-funded, 10-week-long summer research pro- $_{\scriptscriptstyle{121}}$ gram and it is open to students of all nationalities from outside of Leiden University, therefore promoting inward short-term $_{\scriptscriptstyle{123}}$ mobility. The program aims to help participants prepare for potential further research at a higher level in three main ways, 125 Firstly, they build their research experience profile and develop₁₂₆ useful skills, including problem solving, coding, communication, and networking. Secondly, the program gives participants an 178 opportunity to experience a full-time research project, poten-129 tially in a new research area of astronomy, often unavailable as $_{\scriptscriptstyle{130}}$ part of the curricula at their respective institutions. The $purpose_{131}$ is to assist the students to make decisions such as whether they $_{\scriptscriptstyle{132}}$ wish to pursue a research degree, and if so where and in which $_{133}$ field. Finally, conducting research at an international establish $_{\ensuremath{\text{1}}_{34}}$ ments such as Leiden Observatory and ESA/ESTEC is a valuable part of a portfolio for applications for further research (namely a postgraduate research degree).

LEAPS was started in 2013 with an aim to provide world class research opportunities to students from across the world and 136 promote Leiden as a place for graduate studies. It is now one of 137 the longest running, fully-funded and open summer research 138 programs in astronomy in the world (see Table 1). It has been 139 conducted on a yearly basis with an average participation of 140 18 students, including an online version during the COVID-19141 pandemic in 2020. The organising committee of the program is 142 composed exclusively of astronomy postdoctoral researchers at Leiden Observatory and research fellows at ESTEC, with the participation of one administrative member of Leiden Observatory for logistics organisation.

Each year different research projects are advertised and their

scope spans different areas of astronomy and astrophysics including theory, observations, and instrumentation. This allows a wide variety of research projects to be conducted during LEAPS. Before the student selection process starts, the LEAPS committee collects the title and abstract of the projects from the supervisory teams. These are then advertised on the LEAPS website for the student to choose.

The student selection process is performed by the supervisors of each project and consists of i) a review of the student application and ii) an online interview in English. For the first step, applicants are required to send their curriculum vitae, their academic transcripts, and a motivation letter in which they express preferences for up to two of the available research projects. They are also asked to arrange for a reference letter to be sent. Upon reviewing the submitted material, the supervisors prepare a shortlist of candidates for the subsequent interviews. For each project, the candidate with the best scores is selected for participating in the program.

During both steps of the selection process, the organising committee provides guidelines as to, for instance, making sure that the eligibility criteria are met by the candidates, understanding confidentiality of the material, conducting interviews effectively (with the option to involve external experts), and reducing intrinsic bias in the selections. As of 2023, we introduced a country grading system during the selection process. This system accounts for both the nationality of applicants and their university affiliation at the time of application, considering potential biases and disparities related to access to education, research opportunities, and financial constraints. By evaluating countries based on key developmental and educational factors, such as Human Development Index (HDI²), STEM representation³, gender and diversity representation⁴, and scientific publications⁵, we aim to provide a fairer way to contextualize candidates' achievements and increase diversity in the program.

Besides their day-to-day project work, as part of the summer program, the students attend presentations and lectures dedicated to, for instance, academic writing and efficient communication in presentations. These are typically given by professional astronomers at Leiden Observatory. Additionally, the LEAPS committee arranges at least two guided visits during the summer program: one visit to ESTEC and one visit to ASTRON (the Netherlands Institute for Radio Astronomy). At the end of the summer program, the LEAPS committee organises a one-day event where every student presents their results to the members of Leiden Observatory. Many students subsequently adapt their presentation for a talk at their home institution or an international conference (see Sect. 3). Overall, these experiences aim to provide and improve basic skills for a career in astronomical research.

3 Statistics and Impact of LEAPS

The aim of this paper is to quantify and discuss the impact of the program, hence we have collected information regarding the career status of the participants as of 2023, their country of affiliation at the moment of application, and any scientific output. With the latter, we encompass both the publication of peer-reviewed scientific articles as well as participation in international astronomy conferences where they have delivered

² see the Human Development Reports website

³ see the Organisation for Economic Co-operation and Development (OECD) Science, Technology, and Industry Scoreboard website

⁴ see the Global Education report at the UNESCO website

⁵ Quantified as the number of peer-reviewed papers produced by a researcher of a certain country to indicate the level of scientific activity, see also the Scopus website.

¹ The LEAPS website is available here.

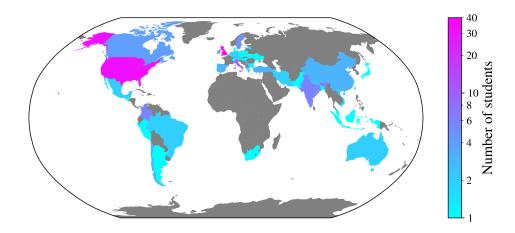


Figure 1. Country of affiliation at the moment of application for students that participated in LEAPS between 2013 and 2023. The countries are colour-coded based on the number of students affiliated with that specific country.

a talk or presented a poster.

145

146

148

149

150

151

152

153

154

156

157

158

160

161

162

163

165

166

167

168

169

170

171

172

173

176

177

178

180

181

183

184

185

We retrieved the data on the country of affiliation from the legarchives of the program. For the career path and the scientific legarchives of the program. For the career path and the scientific legarchives output, we contacted the students that participated in the program. In case this was not possible, we performed an online legarch (via LinkedIn, personal websites, University websites, etc). legarchives total number of students who participated in LEAPS between 2013 and 2023 is 194; and we collected information legarchives for them, resulting in an 85% completion rate. The incompleteness stems from a lack of information in our records or unavailable information from online searches.

The goal of LEAPS is to enable students to build their sci-¹⁹⁷ entific profile towards a research career, thus undertaking a ¹⁹⁸ Ph.D. after LEAPS is already evidence of a propensity to such ¹⁹⁹ a career path. In this light, our results more sensitive toward ²⁰⁰ the short-term impact of LEAPS rather than a long-term one. ²⁰¹ From Fig. 2, we also note that there are no long-term trends in ²⁰² the Ph.D. fraction (except for the students currently enrolled ²⁰³ in MSc programmes), indicating that our conclusions on the ²⁰⁴ Ph.D. propensity are not biased by our completion rate.

LEAPS has attracted applicants from more than 89 countries, with consistently increasing number of applicants per available project over the years. For instance, the oversubscription ratio per project has reached higher than 80 for several projects in the last few years, which highlights the popularity and competitiveness of the program. The number of students with available information on their affiliation is 163. As of 2023, successful candidates have come from institutions in at least 40 countries, as shown in Fig. 1. Around 24% of the students had an affiliation in the United Kingdom, 20% from the United States of America, and 6% from Italy. Each of the remaining countries account for at most 4% individually. When compared in terms of continent, and 53% of the students had a European affiliation, 23% a North American one, 9% a South American one, 13% an Asian one, and 218 between Africa and Oceania.

Participating in LEAPS may have motivated the students²²⁰ to progress with research and develop prominent international²²¹ careers. Fig. 2 shows the number of students that are working²²² towards or have completed a Ph.D. since LEAPS. We observe that²²³ more than 50% of the participants for each year have secured a²²⁴ Ph.D. position. The years 2022-2023 see a low number of stu⁻²²⁵ dents conducting a Ph.D. simply because most participants were ²²⁶ in a master's program at the time of our survey. The number of LEAPS participants that have undertaken or are undertaking₂₂₈ a Ph.D., and for which we have information about their affili₂₂₉

ation before and after LEAPS, is 118. Of them, we recorded 71 students (60%) choosing a different country for the Ph.D. than that of the affiliation before LEAPS. Instead, 47 students (40%) chose the same country. In this light, LEAPS may have provided additional motivation to pursue an international career and thus increase student international mobility.

We include here a few testimonials from LEAPS students over the years, in order to provide more qualitative data on the influence of LEAPS on their skills, network, and motivation.

- S. Yen (LEAPS 2013) 'I'm glad to hear LEAPS continues after all these years. It was such a valuable and insightful experience. I absolutely loved it!'
- T. Boztepe (LEAPS 2018) 'I learned various things, including programming skills, astronomy, academic culture, etc. from [supervisor]. During my time in LEAPS, [supervisor] was patient and helpful and helped me to improve myself.'
- L. Pham (LEAPS 2021) 'The experiences I gained from LEAPS are significantly helpful for me to overcome challenges in research.'
- G. Pignataro (LEAPS 2021) 'LEAPS actually helped me get into the PhD program at the University of [city], the same year.'
- D. Nadella (LEAPS 2022) 'It was a valuable experience and we were fortunate enough to write a paper about our research that summer.'

In turn, LEAPS may have contributed to establishing Leiden as a sought-after destination for graduate studies in astronomy, with applications to the Leiden Observatory Ph.D. program increasing sharply since the program's inception. From the available information about the Ph.D. affiliation after LEAPS, we found that Leiden Observatory is the Ph.D. institute of twelve students, with an average of one student per year. In a couple of cases, these Ph.D. students have given back to the program, such as by appearing on a careers panel or even acting as a project mentor to their own student. Moreover, many LEAPS alumni have successfully obtained prestigious fellowships around the world that are noteworthy in astronomy: one NASA Sagan fellowship, one Hubble fellowship, one Einstein fellowship, one 51 Pegasi b fellowship, one Humboldt fellowship, two ESO fellowships, and one De Sitter fellowship.

For the scientific output of LEAPS, we found that at least 25 research papers have been published in peer-reviewed astron-

230

231

232

233

234

236

237

238

240

241

242

243

244

245

No.	Program	Organizer	Eligible Countries	Duration	Fully Funded	Inception
1	RISE Germany	German Government	4 Countries	12 weeks	Yes	2005
2	RISE Worldwide	German Government	Germany	12 weeks	Yes	2010
3	Globalink	MITACS Inc. Canada	17 Countries	12 weeks	Yes	1999
4	SURP	University of Toronto	Canada	4 months	Yes	N/A
5	SASP	STScI USA	All	9 weeks	Yes	N/A
6	ASTRP	Oxford University	UK	8 weeks	Yes	N/A
7	REU	NSF USA	USA	10 weeks	No	1987
8	FRT	Australian National University	2 Countries	10-12 weeks	Yes	2019
9	SRPs	Australian Universities	2 Countries	6-12 weeks	Yes	Variable
10	ESO-SRP	European Southern Observatories	Prefer ESO	6 weeks	Yes	2019
		Member States	Member States			
11	RASS	Raman Research Institute	India	8 weeks	Yes	N/A
12	Astro Camp	Universidade do Porto	42 Countries	2 weeks	No	2012
13	SSP	ASIAA Taiwan	All	8 weeks	Yes	1998
14	VOSS	Vatican Observatory	All	4 weeks	Yes	1986
15	ASPIRE	University of Amsterdam	All	6 weeks	Yes	2015
16	SRP	ASTRON Netherlands	All	10-12 weeks	Yes	2015
17	LEAPS	Leiden University & ESA/ESTEC	All / prefer ESA Member	10 weeks	Yes	2013
			States for ESTEC			

285

286

287

Table 1. Comparison of LEAPS with other summer research programs in astronomy in the world. **Fully funded indicates the inclusion of accommodation, travel, and a stipend.**

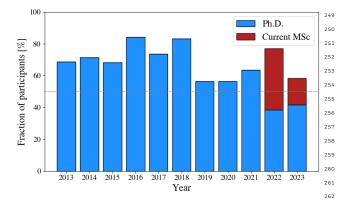


Figure 2. Number of students each year who have subsequently undertaken²⁶³ a Ph.D. program normalised by the total number of participants for **that year**²⁶⁴ The red bars for 2022 and 2023 indicate the students who, after LEAPS, were 265 enrolled in a masters program at the time of our survey.

omy journals 6 . Similarly, the astrophysics data system (ADS) $_{_{269}}$ records a conference participation in the form of a talk or a poster $_{_{270}}$ for at least 13 additional projects (we note that only some confer- $\frac{1}{271}$ ences record their contributions in that database). Overall, these $_{_{772}}$ numbers highlight the successful research productivity from $_{\scriptscriptstyle{273}}$ LEAPS, the improvement of the student's curriculum to pursue $_{_{274}}$ further research, and the establishment of longer-term work-275 ing relationships beyond the ten weeks of the program itself $_{\mbox{\tiny 276}}$ Not only does LEAPS benefit the students, but also the earlycareer researchers who devise and supervise the projects and $_{278}$ run the program. For instance, early-career researchers obtain $_{779}$ hands-on experience on shortlisting candidates and managing $_{\mbox{\tiny 280}}$ selection interviews, also helping them to reflect on their own $_{_{281}}$ applications and those of any other students they advise. The $_{_{\rm 282}}$ mentoring and coordinating experiences are valuable for their $_{^{283}}$ career development and progression.

4 Summary and Discussion

In this paper, we introduced the LEAPS program for summer student conducted jointly by Leiden Observatory and ESA/ESTEC $_{289}$

We described the impact of the program between 2013 and 2023 in terms of current career status of the participants, their country of affiliation at the moment of application, and their scientific output. The information collected from the database of LEAPS shows an overall positive contribution, with at least 50% of the participants pursuing doctoral studies from almost all years of LEAPS, **25** peer-reviewed published papers, and at least five world-renowned research fellowships. These aspects indicate that LEAPS **may** successfully contribute to provide basic skills and competences for a career in astronomical research. With participants from at least 40 countries, LEAPS is providing the international study experience that may, given the findings of Knutsen et al. (2024), help these students secure a career abroad should they wish.

Generally, there are certain challenges to international student mobility to be taken into account (Brooks et al., 2024): student well-being, financial support, and diversity. The student well-being is an aspect that LEAPS takes seriously because, in the context of academic internationalisation, it is known that carrying out a research project in a foreign country may be stressful. Ultimately, this could lead to a negative influence on the satisfaction with the experience abroad (Ramirez and Rodriguez-Medina, 2024). During LEAPS, each project must have two supervisors to i) safeguard the welfare of the student, ii) make sure that at least one supervisor is present for the duration of the program for regular updates on the student's progress, and iii) allow the student to benefit from wider scientific expertise. In addition, the students have access to welfare channels such as Observatory Allies and Confidentiality Counsellors, and the LEAPS organising committee performs a welfare check around halfway through the program, to address whether the students are well-settled in Leiden, and are satisfied with their living situation, healthcare, sufficiency of the stipend, relationship with their supervisors, and provision of project support. The camaraderie of the LEAPS cohort, nurtured by housing the students together and having them share an office, is the final pillar of their social support. Every LEAPS cohort has been seen to independently organize travel and trips on the days off to explore life in Europe. LEAPS alumni also report remaining in contact over the years. and continue to support each other in various ways.

Another challenge to face is the affordability of international students mobility (King et al., 2010; Souto-Otero et al., 2013; Brooks et al., 2024), which most likely impacts students from less privileged social backgrounds (see e.g. Slowey et al., 2020).

⁶ The list of output from LEAPS is available here LEAPS ADS Library

To help navigate the costs of living abroad, LEAPS provides a₃₅₅ complete package. In practice, the costs of travel to/from the Netherlands, accommodation for the duration of the program_{a556} international student insurance, visa applications, and living expenses (in the form of a stipend) are covered by the program. This₃₅₇ aspect of the program ensures an equitable ability for students₃₅₈ to partake in research opportunities regardless of the financial₃₅₉ status. The funding for LEAPS has been periodically increased₃₆₀ to take inflation into account, and **to keep it on** par with other₃₆₁ summer programs in the Netherlands.

293

297

299

300

301

307

308

310

311

312

313

314

315

316

318

319

320

321

322

323

325

326

327

329

330

337

333

334

335

336

337

338

340

341

343

344

345

348

349

351

352

354

Finally, an area of improvement of the LEAPS program lies₃₆₃ in the diversity of the students. Although LEAPS strives to en-364 sure fairness by mitigating any financial disadvantage of the₃₆₅ participants, and the LEAPS selection process involves multiple supervisors at every step, in order to increase fairness, Fig. 1 illustrates that the majority of students were affiliated with European 366 and Northern American countries, which tend to have larger, more internationally recognized academic systems, and more 367 scientific outputs. Notably, the countries with the greatest number of previous participants also provide the most applicants, suggesting a level of self-reinforcement; in these countries the program becomes well-known and previous participants or their advisors mentor further applicants to success. Therefore, differ-369 ent strategies are needed in order to increase diversity towards students that are traditionally less likely to engage in international mobility, for example through increased promotion of the program in under-represented areas. As mentioned in Sect. 2, we recently developed a country grading system aimed at reducing disparities among applicants, but future monitoring is required to evaluate the effect of its implementation on the $\frac{374}{374}$ diversity of LEAPS participants.

An interesting case study that emerged from our data is Colombia. The LEAPS participants affiliated with this country have an outsized number with respect to its i) population and ii) scientific strength, as referred to based on parameters like HDI, STEM representation, and scientific publications (see Sect. 2). This could plausibly be due to an effective advertisement of LEAPS by previous students from Colombia or during the AstroTwinCoLO programme T. The latter is a twinning programme between the University of Leiden and the University of Antioquia aimed at boosting the development and improving the quality of astronomy teaching and research at the University of Antioquia and the Andean region.

We note that the focus of LEAPS is on international mo₃₈₅ bility, thus here we have highlighted geographic imbalance₅₈₆. Other equally important dimensions of diversity such as gen₃₈₇ der are not explicitly targeted by the program, and corre₃₈₈ spondingly the required data to evaluate these aspects are₃₈₉ not always recorded. Nevertheless, we note that in all years₃₉₀ with available data, a majority of participants were female₅₉₁. This suggests that current advertising and selection practices₃₉₂ are sufficient to maintain participation from those historically₃₉₃ marginalized on account of gender.

In conclusion, the astronomy internships available world-wide have become very competitive even at the undergrad-394 uate and masters stage, given the steep rise in astronomy research around the world. This demonstrates the success of 395 several efforts aimed at astronomy outreach in high schools 396 and colleges around the world. However, future programs 397 should look at sustainability in terms of how to balance the 398 vast number of talented and interested applicants with the 399 small number of positions available.

5 Declarations

5.1 List of abbreviations

ADS = Astrophysics Data System

ESA = European Space Agency

ESO = European Southern Observatory

ESTEC = European Space Research and Technology Centre

HDI = Human Development Index

LEAPS = Leiden/ESA Astrophysics Program for Summer students
OECD = Organisation for Economic Co-operation and Develop-

STEM = Science, Technology, Engineering, and Mathematics

5.2 Consent for publication

Not applicable.

5.3 Competing Interests

The authors declare that they have no competing interests.

5.4 Funding

S. Bellotti acknowledges funding by the Dutch Research Council (NWO) under the project "Exo-space weather and contemporaneous signatures of star-planet interactions" (with project number OCENW.M.22.215 of the research programme "Open Competition Domain Science- M"). A. D. Sellek acknowledges support from the ERC grant 101019751 MOLDISK. P. Sharda is funded by the Leiden University Oort Fellowship and the International Astronomical Union Gruber Fellowship. K. M. Dutkowska acknowledges support from the European Research Council (ERC) Advanced Grant MOPPEX 833460.vii. A. Chrimes acknowledges support through the European Space Agency (ESA) research fellowship programme.

5.5 Author's Contributions

S. Bellotti, A. Sellek, P. Sharda, K.M. Dutkowska, and A. Chrimes were the members of the LEAPS committee when this paper was conceptualised. S. Bellotti curated and analysed the data. S. Bellotti, A. Sellek, P. Sharda, and K.M. Dutkowska provided resources and references for the paper, and wrote the original draft of the paper. S. Bellotti and P. Sharda created the plots and tables for visualising the results. K.M. Dutkowska designed the country grading system implemented during the LEAPS selection process. All authors participated in the editing and review of the paper.

6 Acknowledgements

402

403

We would like to thank Adam Muzzin for spearheading the initiation of LEAPS, and Ignas Snellen, Jos de Bruijne, and Gaitee Hussain for supporting LEAPS over the years. We also thank the various staff members of Leiden Observatory who have financially supported LEAPS students from their research grants. We would like to thank Monica Lamers and Nancy Zhou for the administrative work behind the smooth organisation of the summer programme. We would also like to thank all past and present members of the LEAPS committee and the supervisors for the organisation and commitment to LEAPS. We would finally like to thank the former LEAPS participants who provided us with information on their subsequent career paths.

409

410

411

412 413

414

415

424

437

448

450

451

References

- Brooks, R., Courtois, A., Faas, D., Jayadeva, S., and Beech, S. (2024). International student mobility within europe: responding to contemporary challenges. Higher Education, 88:1663-1672.
- Brooks, R. and Waters, J. (2011). Student Mobilities, Migration and the Internationalization of Higher Education. Palgrave Macmillan London
- Hernández, F. (2020). The effect of university graduates' international mobility on labour outcomes in spain. Studies in Higher Education 47:1-12
- Jacob, M., Kühhirt, M., and Rodrigues, M. (2019). Labour mar-417 ket returns to graduates' international experience: Exploring 418 cross-country variation in europe. European Sociological Re-419 view, 35(4):pp. 491-505
- King, R., Findlay, A., and Ahrens, J. (2010). International student 421 mobility literature review. HEFCE. 422
- Knutsen, T. K., Wiborg, V. S., and Wiers-Jenssen, J. (2024). Impact 423 of international student mobility on international profile of jobs. Higher Education. 425
- Kratz, F. and Netz, N. (2018). Which mechanisms explain mon-426 etary returns to international student mobility? Studies in Higher Education, 43(2):375-400.
- Netz, N. and Cordua, F. (2021). Does studying abroad influence 429 graduates' wages? a literature review. Journal of International 430 Students. 11(4):768-789. 431
- Petzold, K. and Moog, P. (2018). What shapes the intention to 432 study abroad? an experimental approach. Higher Education, 433 434 75:35-54
- Ramirez, V. and Rodriguez-Medina, L. (2024). Well-being and 435 the internationalisation of academic life: an exploration from 436 the periphery. Higher Education, 87:1551-1568.
- Rodrigues, M. (2012). Determinants and impacts of student mobility: a literature review. Publications Office of the European 439 440
- Rodrigues, M. M. (2013). Does student mobility during higher 441 education pays? evidence from 16 european countries. Scientific analysis or review LB-NA-26089-EN-N, Luxembourg 443 444
- Slowey, M., Schuetze, H., and Zubrzycki, T. (2020). Inequality, Innovation and Reform in Higher Education: Challenges of 446 Migration and Ageing Populations. 447
 - Souto-Otero, M., Huisman, J., Beerkens, M., de Wit, H., and VujiĆ, S. (2013). Barriers to international student mobility: Evidence from the erasmus program. Educational Researcher, 42(2):70-77.
- Teichler, U. and Janson, K. (2007). The professional value of 453 temporary study in another european country: Employment and work of former erasmus students. Journal of Studies in 454 International Education, 11(3-4):486-495. 455
- Van Mol, C. (2017). Do employers value international study and internships? a comparative analysis of 31 countries. Geofo-457 rum, 78:52-60. 458
- Zimmermann, J. and Neyer, F. J. (2013). Do we become a differ-459 ent person when hitting the road? personality development of sojourners. Journal of Personality and Social Psychology, 461 105(3):515-530. 462